
  
 

Data Hiding in Journaling File Systems1 
Knut Eckstein†, Marko Jahnke‡ 

 
Abstract: Data hiding is one technique by which system 
perpetrators store information while reducing the risk of 
being detected by system administrators. The first major 
section of this article structures and compares existing data 
hiding methods for UNIX file systems in terms of usability and 
countermeasures. It discusses variant techniques related to 
advanced file systems.  The second section proposes a new 
technique that stores substantial amounts of data inside 
journaling file systems in a robust fashion with low 
detectability, which is demonstrated by means of a proof-of-
concept implementation for the ext3 journaling file system. 
  
Index Terms: Data hiding, UNIX, journaling file system 

I. INTRODUCTION 
Having successfully penetrated a computer system, 
attackers often want to continue (ab)using the system 
without being detected by the system owner or 
administrator. Detection avoidance is accomplished using 
several techniques, amongst them 
• Trojanizing system binaries or kernel, often referred to 

as introducing “backdoors” or “rootkits” 
• Purging of system audit and process accounting logs 
• Data hiding 
 
This paper focuses on data hiding which is often used to 
hide incriminating data such as sniffer or password 
collector log files or contraband such as pirated copies of 
programs or media files. Rootkits offer their own data 
hiding techniques, usually by means of keeping a list of 
“invisible” files. While their substantial capabilities go 
beyond hiding files, their usability compared to other hiding 
techniques is constrained by higher complexity and limited 
platform availability. 
 
Known hiding techniques for UNIX-based computer 
systems are discussed in section II. Each technique will be 
qualified in terms of usability from an attacker's and 
potential countermeasures from a system administrator's 
point of view.  
 
For reasons of space, the countermeasures discussion 
focuses on “live” countermeasures performed on a running 
system, as opposed to forensic off-line analysis and 
detection techniques. Also, the attacker’s main intent while 
using the hiding methods described is to hide from casual 

inspection during normal system operation, not from a 
forensic analysis2 applied to a file system image.  
Section III introduces and demonstrates a new hiding 
technique that pertains specifically to journaling file 
systems. Section IV contains a summary and conclusions. 

II. KNOWN HIDING TECHNIQUES 
This section is organized into subsections following the 
high-level abstraction layers for digital data in forensic 
examinations [2]. 
• Media management layer 
• File system layer 
• Application layer 
 
Each layer will be briefly introduced at the beginning of a 
subsection. 

A. Media Management Layer 
At the media management layer, digital storage media can 
be subdivided into multiple parts. These are referred to as 
partitions, slices or volumes. Subdivision is recorded in 
partition tables or similar media management data 
structures. 
 

1) Using unused media areas 
The “standard” data hiding technique at this layer is the 
usage of an area that is marked as not in use according to 
the partition table. Additionally, small unused areas exist on 
a storage medium between media management data 
structures that can also be used for data hiding [4]. For 
example, in the MS-DOS partitioning scheme used by the 
Windows OS family and a number of x86 UNIX 
implementations, the sectors immediately following a boot 
sector in the 1st track until the start of the first disk partition 
in the 2nd track offers 62 sectors or 31KB. Also, a media 
management data structure may not occupy the entire sector 
length of 512 bytes, thus offering a very small additional 
hiding area. 
 
Some storage technologies offer specific areas for data 
hiding outside the generic partition-based scheme discussed 
here, for example the Host Protected Area (HPA) that is 
part of the IDE disk drive specification.  
 

a) Usability for the Attacker 

                                                           

                                                          

To hide data on a standard mass storage medium, an 
attacker has to reduce the size of one of the partitions on the 1 Published in: Proceedings of the Digital Forensics Research Workshop 

2005, New Orleans, USA, 2005.  
† NC3A, P.O. Box 174, 2501CD The Hague, The Netherlands, 
knut.eckstein@nc3a.nato.int 

2 Barring steganograhpy and encryption, all hiding techniques discussed 
here can be discovered by a sector level search of the storage media for 
key words or file header sequences. ‡ FGAN/FKIE, 53343 Wachtberg, Germany, jahnke@fgan.de 



  
 

medium, assuming that the current partition layout makes 
full use of the physical storage space.  
 
In order to be able to reduce the partition size, the file 
system contained inside the partition first has to be shrunk 
to the desired new size. This technique requires 
administrator privileges to operate both the partition and 
file system related tools as well as access to the raw disk 
device in order to access the newly created, “unused” space. 
 
Many traditional UNIX file systems do not allow an on-line 
resize. In this case the attacker has to unmount, shrink the 
file system and remount in order to create an unused area. 
This may generates audit log entries which increase the risk 
of being detected. Advanced file systems often introduce 
on-line resizing in addition to other features such as 
journaling, thereby simplifying this hiding method for the 
attacker to some extent3. Regarding HPA-based attacks, 
HPA size changes may require a system reboot, depending 
on the disk model [4]. 
 
Available “hiding space” is expected to scale linearly with 
the disk size, assuming that partition or HPA related 
manipulations below a certain level, for example 5% of 
total disk size, will not be noticed by system administrators 
immediately. The method is “reboot safe” in that after a 
system restart all hidden data remains hidden and no 
additional measures have to be taken to prevent it from 
being overwritten or otherwise lost. 
 

b) Countermeasures 
Regular checking of partition size and IDE disk/HPA sizes 
will reliably detect this technique, keeping in mind that 
local copies of the relevant tools could be trojanized. Given 
that the attacker typically has obtained system administrator 
privileges and is thus able to purge local audit logs, auditing 
the use of disk partitioning tools such as fdisk or auditing 
access to raw disk devices must involve a remote logs 
server.4 On highly sensitive systems, employing a single 
file system which is not online resizable will not entirely 
prevent the attack, but make it substantially more 
complicated and easier to detect. In case other legitimate 
programs do not require raw disk device access, BSD-style 
SecureLevels [13] could be used to block access to raw disk 
devices. With SELinux entering mainstream Linux 
distributions, mandatory access control technology can now 
be used to strictly limit access to raw disk devices to a small 
number of legitimate tools, at the cost of additional system 
management complexity 
 

2) Mounting on non-empty directories 
A very simple but yet powerful method to hide information 
is to mount a filesystem onto an non-empty directory. The 
data to be hidden is stored in ordinary files or subdirectories 
in an appropriate directory. The attacker then mounts an 
                                                           

                                                          
3 Among those file systems that do allow online resizing, some only allow 
growing but not shrinking 
4 In this case the attacker has to decide whether the “benefit” of (partially) 
disabling remote logging outweighs the risk of revealing his existence 
through this change in the system’s audit log configuration. 

existing filesystem – or a newly created one, for example 
using loopback mounting – onto this directory and therefore 
hides the data inside the mountpoint directory. 
 

a) Usability for the Attacker 
This hiding technique is extremely easy to use, no special 
tools nor deeper filesystem knowledge are required. 
Privileges required depend on the access control settings for 
mounting the target directory. As above, storage capacity 
scales with the available disk space. 
 

b) Countermeasures 
Detecting the use of existing partition mounts has to rely on 
auditing the (remote) system log for subsequent unmount 
and mount operations5. Newly created mounts can be 
detected easily controlling the filesystem mount table, e.g. 
during startup and in regular intervals. This also needs to be 
done during filesystem backups. Avoiding user-mountable 
file systems can reliably prevent filesystems from being 
mounted by non-privileged attackers. Another detection 
technique is the comparison of the output of the du and the 
df command per file system, since the hidden files in the 
“overmounted” directory will not be counted by du. 

B. File system layer 
The filesystem abstraction layer offers a large variety of 
data hiding techniques. The analysis in this subsection is 
structured along four categories6 of file system data 
structures. These categories have been introduced [2] to 
analyse file systems following a generic model: 
• File system 
• Data unit / Content  
• Metadata 
• File name / Human Interface 
 

1) File system category 
Data structures in the file system category are partition 
level boot blocks, “superblocks” or other global data 
structures that describe the file system’s general properties.  
 
These data structures may not use an entire logical disk 
block. Similar to the previous section, this may lead to a 
number of very small data hiding opportunities [4]. 
 

2) Data unit category: Slack space  
The data unit category refers to a file system organizing 
storage media sectors into individually adressable data 
units, often referred to as “logical disk blocks”.  
 
Slack space is defined as the unused part of a file's last data 
unit. For example, a file which is 10KB in size will require 
three 4KB data units for storage in a file system with 4KB 
block size. The last unit will only be used up to its first 
2KB. The other two 2KB are unused and available to an 

 
5 Often times, mount and unmount operations are not logged by default. 
6 These categories are not layers of abstraction, thus the term “sub layer” is 
avoided in this context. 



  
 

attacker for hiding data in this file, which can be seen as a 
“host file”. 
 

a)  Usability for the Attacker 
The slack space can be accessed through publicly available 
tools, for example bmap [10]. This hiding technique 
requires administrator privileges to access the raw disk 
device.  
 
On the downside, this method offers limited storage space, 
on average bounded by 1/2 * block size * number of files.  
Also, it cannot guarantee the hidden data against being 
overwritten, in case the “host file” is deleted or changes its 
size. The attacker could limit storage to files he expects to 
be fairly static. While this would reduce the chances of 
losing hidden data, it still does not provide any guarantees 
and it further limits the available storage. 
 

b) Countermeasures 
Auditing of raw disk device access is one potential 
countermeasure, which can be resource intensive if 
legitimate tools do access raw disk devices on a regular 
basis. In a highly sensitive environment, access to raw disk 
devices could be either be blocked altogether via the BSD 
secure level mechanism or regulated by the mandatory 
access control mechanisms offered by SELinux. 
 
Attacker tools like bmap can also be used to audit or wipe 
the available slack space. Alternatively, a small 'slack space 
wiper' software could be created and run periodically. Such 
a program must be carefully crafted to avoid manipulating 
files which the OS kernel is writing to at the same time.  
 
Advanced file systems often introduce extent-based 
addressing schemes. These schemes no longer require 
addressing of individual data units in order to manage the 
data units allocated to a file. Instead, address and length of 
potentially very large data unit areas on disk are recorded. 
This means that smaller data unit sizes can be specified in 
order to reduce available slack space without adversely 
effecting data unit allocation management overhead. 
 

3) Metadata category: Use reserved inodes 
In the metadata category, data structures commonly referred 
to in UNIX  file systems as “inodes” organize per-file 
metadata such as timestamps, ownership, access rights etc. 
 
An attacker may use inodes which the operating system 
itself will not use, assuming that those inodes will also be 
ignored by file system checks, forensic and auditing tools. 
Best known examples are inodes numbers zero and one in 
the Berkeley Fast File System (FFS) and inode number one 
[11] in Linux ext2/3 file systems7.  
 
Recent analysis [5] has shown that advanced UNIX file 
systems can offer more opportunities in this regard. 
Particularly in cases where “multiple file systems per 
                                                           
7 Ext2/3 actually reserves inodes 1-11 without using all of them, but the 
tool introduced in [11] appears to only use inode one. 

partition” functionality is present, which is mandated by the 
Distributed File System (DFS) specification [5]. Multiple 
file systems per partition are typically implemented through 
a meta file system, for example the “aggregate fileset” in 
JFS [1] and the “structural file system” in the Veritas file 
system [7]. Both the meta file system and additional file 
systems offer additional inodes for this data hiding scheme. 
 

a) Usability for the Attacker 
An attacker who wants to employ this hiding scheme has to 
program a nontrivial piece of software, which is going to 
create files using reserved inodes. Such software will 
require system administrator privileges to access the raw 
disk device. The number of files that can be created this 
way is limited depending on the specifics each file system, 
for example 2 for FFS and 13 for JFS for Linux [1]. The 
available storage space scales linearly, assuming – as above 
– that a certain percentage of discrepancy between du and 
df output would not be noticed. 
 

b) Countermeasures 
Comparing the output of du and df totals per file system 
can be one way of detecting this data hiding technique. 
Auditing or limiting access to raw disk devices as discussed 
above provides another countermeasure. The file system 
check software provided by the operating system may or 
may not complain about using reserved inodes. Forensics 
tools have been updated to check for reserved inode 
numbers, for example the ils command from TSK[4] or 
TCT[7] can be run against a FFS or ext2/3 file system. 
 

4) Metadata category: Extended file attributes 
In recent years, UNIX file systems like FreeBSD’s UFS2, 
UFS in Solaris 9 etc. have introduced additional file 
attributes for data storage, comparable to MacOS resource 
forks, NTFS alternate data streams or OS/2 extended 
attributes. These capabilities vary in maximum storage 
space and implementation. All offer a hiding opportunity 
for attacker in that they are ignored by traditional UNIX file 
integrity checkers, not listed during normal directory list or 
search operations and sometimes not even known to the 
system administrator. They are easy to use for the attacker 
and easy to detect for the system administrator using 
commands provided by the operating system. Hiding space 
scales linearly with available disk space. 
 

5) File name category: “Special” filenames 
In the file name category, a file system stores and processes 
data to assign human-recognizable names to files and 
directories, usually creating a hierarchical “directory tree”.  
 
Human perception can be deceived in the file name 
category through creating filenames consisting of space 
characters or spaces and dots, for example ‘.. ‘. Another 
technique creates “credible” file names in densely 
populated areas of the directory tree, like /dev or 
/usr/man, where the casual or untrained inspector would 
fail to recognize that the file was not a legitimate operating 
system component. 



  
 

 
Advanced schemes use special characters like Carriage-
Return inside a filename. These filenames are not meant to 
fool the human perception, but specifically designed to 
thwart standard auditing techniques by making commands 
like find or xargs employed by host based file checking 
routines skip the file to be hidden. 
 

a) Usability for the Attacker 
This hiding technique is very easy to use, no special tools  
are required. Privileges required depend on the access 
control settings of the target directory. Storage capacity 
scales linearly with available disk space. 
 

b) Countermeasures 
Detection can be performed easily by searching for 
filenames containing special characters. Alternatively, a 
host-based intrusion detection tool could monitor for file 
creation. 
 

6) File name category: Removal of open files 
For a long time, attackers have been known to hide both 
program and data files by removing them while the 
program in question was still running. Upon deletion of  an 
open file the operating system immediately removes the 
filename from the directory but delays removal of metadata 
and content until all referring file descriptors have been 
closed. Thus the file becomes “invisible” for filename-level 
inspection. 
 

a) Usability for the Attacker 
No administrator level privileges are required for this 
technique. It is thus very easy to use but storage is highly 
ephemeral: Accessing these hidden files after program 
termination or from another program is difficult and 
requires forensic tools. Another drawback is that not all 
implementations of UNIX allow the removal of open files. 
HP-UX, for example, allows removal of open data files but 
not program files. Storage space scales linearly with disk 
size, again assuming that df/du discrepancies below a 
certain percentage will not be noted immediately. 
 

b) Countermeasures 
The lsof (LiSt Open Files) tools, which is available for 
most UNIX platforms, can be used to detect this hiding 
technique. Its output clearly marks deleted but still open 
files. On a trojanized system, ils can be used on supported 
file systems to provide a independent view without being 
influenced by tool-level or kernel-level distortions. 
 

7) Metadata/File name category: Hide in deleted 
inodes plus trojan fsck 

This is a complicated schema which has been observed and 
reported on a few occasions [11]. It is based on the method 
introduced in the previous subsection but addresses its 
ephemerality in an intriguing fashion. 
  
The fundamental idea is to use a trojanized version of the 
file system checking program (fsck). At boot time the 

trojanized fsck/rc script combo “undeletes” and spawns 
the malicious software, for example a sniffer, then 
“removes” the sniffer executable and the sniffer log file 
again. 
 

a) Usability for the Attacker 
This is a complex procedure where the attacker has to make 
sure that the trojanized fsck works as predicted under all 
circumstances. Storage space offered by this method is 
identical to the previous method, since the hiding of the 
malicious data files is performed in exactly the same 
fashion. 
 

b) Countermeasures 
In one account, this method was discovered by the incident 
handler eventually noticing that the system involved would 
invoke fsck during each and every boot process. which 
then led to a closer investigation of the boot process. In the 
other account [11], an off-line analysis where the system 
was booted from a trusted CD, revealed the trojan fsck 
“unhidden” while the clean fsck was hidden8 in an inode 
marked as deleted. For detecting the running process that 
uses the malicious executable and logfile, lsof or ils 
could be employed as in the previous section. 

C. Application Layer 
Hiding data at the application layer works with individual 
files (“host files”) and is thus independent of both the 
operating system and the file system in use. It is briefly 
addressed in this section for completeness. 
 

1) Obfuscated Loopback Filesystems 
Loopback filesystems provide a widely used mechanism 
offered by a number of Unix type operating systems to 
create and mount a filesystem image within an arbitrary 
host file. Regularily created filesystem images can easily be 
identified by the file command due to their unique 
“magic number”. A simple, but effective method to 
obfuscate the real purpose of the image file is to use the 
offset option of the loopback mount command: Just by 
concatenating a filesystem image to a (partial) file with a 
registred magic number (e.g. the beginning n bytes of a 
dynamic loadable library), the files real purpose cannot be 
determined reliably, while it is still possible to mount the 
image by using the apropriate offset flag of the loopback 
mount command (e.g. “-o loopback, offset=n”). 
 

2) Unused spaces in application file formats 
Many file formats contain unused sections, for example the 
comment field in a jpeg image format. Space is quite 
limited and largely depends on the number of available 
application files.  Administrator privileges are usually 
required. Creating lots of new “host files” will not go 
unnoticed. Still auditing can be cumbersome since detection 
is specific to every possible file format used. Alternatively, 

                                                           
8 In [11], additional measures are taken to hide the trojanized fsck program 
itself, but the persistence of this additional measures across multiple 
reboots remains unclear. 



  
 

a timeline analysis of file modification and access times or 
the logfile analysis of a HIDS monitoring file operations 
could reveal anomalies hinting at a “secondary use” of the 
application files in question. For example, a hiding tool 
which would simply split up a large piece of information 
and hide it in a large number of files, would create a large 
number of almost identical access or modification 
timestamps during read or write operations. 
 

3) Steganography 
Although steganography is very much a  research field on 
its own, from the file system centric or “lower level” point 
of view of this analysis it is very similar to the previous 
section in that space is being offered largely depends on the 
number and size of “host files”. Likewise, countermeasures 
are either very specific in terms of content/application 
specific steganalysis or could be based on anomaly analysis 
of file access timestamp patterns. A steganographic file 
system is described in [7]. 

D. Summary of known hiding techniques 
Barring steganography, all hiding methods described up to 
this point either were designed to escape a casual human 
observer only, or they were designed to use unused areas, 
“holes” in data structures or relying on “nominal” deletions 
not being overwritten due to limited file system activity. 

III. NEW SCHEME: DELIBERATE FS 
INCONSISTENCIES 

The new data hiding scheme that is proposed in this paper 
works by introducing deliberate file system inconsistencies. 
It relies on a fundamental property of journaling file 
systems. Because the journal records all recent file system 
modifications, the time required for the file system 
consistency check at boot time can be drastically reduced: 
Instead of checking consistency amongst all categories of 
file system data, the modifications recorded in the journal 
are “replayed” to check whether all of them were executed 
successfully. If, due to a system crash etc. not all recorded 
modifications were performed, the journal allows for a very 
efficient “roll back” to a clean file system state.  
 
That means that the file system consistency check during 
system start up no longer scales linearly with disk size but 
is reduced to a short check of the journal contents. Thereby 
system restart times are drastically reduced, particularly for 
data center systems with very large storage subsystems. 
Only in very exceptional circumstances of massive 
corruption, where rolling back the journal does not result in 
a consistent file system, will a full, traditional consistency 
check be performed across the whole file system. 
 
An attacker can exploit this lack of consistency checking to 
hide large amounts of data by deliberately introducing 
inconsistencies between categories while keeping 
consistency in each individual category to avoid loss of 
hidden data due to overwriting. By directly modifying data 
structures on disk, the attacker bypasses the journaling 
mechanism altogether. The following paragraph illustrates 

one of several possible inconsistencies: The attacker 
allocates and uses data units. He does not create inodes to 
reference the data units, thereby deliberately introducing an 
inconsistency between the data unit and the metadata 
category. 
 
In the first step he localizes a set of unallocated data units. 
These units are then marked as allocated and used for the 
purpose of hidden storage. Because of the allocation 
marking, the operating system cannot accidentally 
overwrite the hidden data. In this simple scheme the 
attacker has to record the addresses of the data units used 
for later reference. While this may sound like an onerous 
task, many journaling file systems offer extent-based 
allocation schemes where large areas of disk storage can be 
addressed contiguously. Thereby only a single address and 
length specification would in many cases be all that needs 
to be recorded by the attacker.  

A. Proof of concept demonstration 
In order to test the usability of this attack, a simple proof-
of-concept code was implemented for the ext3 file system 
which is a popular default choice for many Linux 
installations. The listings below were created in a VMware 
virtual machine running the Suse 9.2 Linux distribution9.  
# dd if=/dev/zero of=/dev/sda1 bs=1k 
dd: writing `/dev/sda1': No space left on device 
17393+0 records in 
17392+0 records out 
# mkfs.ext3 /dev/sda1 
[...] 
Block size=1024 (log=0) 
Fragment size=1024 (log=0) 
4368 inodes, 17392 blocks 
3 block groups 
8192 blocks per group, 8192 fragments per group 
1456 inodes per group 
[...] 
Creating journal (1024 blocks): done 
[...]             

Listing 1: Creation of sample ext3 file system 
 
Listing 1 shows the creation of the test file system on a 
16MB virtual disk (/dev/sda1). Note that the file system 
journal takes up 1024 logical disk blocks, whose size is 1K.  
# mount /dev/sda1 /mnt 
# df -h /mnt 
Filesystem            Size  Used Avail Use% Mounted on 
/dev/sda1              17M  1.1M   15M   7% /mnt 
# du -sh /mnt 
13K     /mnt 
# perl -e "print 'A' x 4 x 1024 x 1024" >/mnt/4MB-of-As 
# ll /mnt 
total 4134 
drwxr-xr-x   3 root root    1024 Sep 19 02:00 . 
drwxr-xr-x  24 root root    4096 Sep 13 08:07 .. 
-rw-r--r--   1 root root 4194304 Sep 19 02:00 4MB-of-As 
drwx------   2 root root   12288 Sep 19 01:59 lost+found 
# df -h /mnt 
Filesystem            Size  Used Avail Use% Mounted on 
/dev/sda1              17M  5.1M   11M  33% /mnt 
# du -sh /mnt 
4.1M    /mnt 

Listing 2: Initial file system usage 

                                                           
9 A small, secondary harddrive was chosen for simplification and 
readablility of listings, nonetheless this hiding method was also 
successfully tested on a 20GB ext3 system partition. 



  
 

 

Listing 3: File system reconnaissance 
 
The attacker begins his work in listing 3, analyzing the file 
system for areas of low usage. For this purpose, he uses the 
fsstat tool from The Sleuth Kit. In correspondence with 
the diagnostic output during file system generation in listing 
1, fsstat reports three block groups in total. The analysis 
by group shows that the 4MB file created in listing 2 has 
been stored in group zero, leaving group one mostly empty. 
The last block group, number two, is less attractive for 
hiding data since it is very small, just a fraction of the 
regular group size.  

Listing 4: Data hiding in progress 
 
In listing 4, the attacker probes the start of the area of 
unallocated blocks within group one. According to 
fsstat, the block range of group one is 8193 – 16384. 

Since block and inode allocation bitmaps etc. take up some 
space at the beginning of each block group, his first guess is 
block 9400. Using dstat from The Sleuthkit he can 
confirm that this block is indeed free.  

# fsstat -f linux-ext3 /dev/sda1 
FILE SYSTEM INFORMATION 
-------------------------------------------- 
File System Type: EXT3FS 
[…] 
Number of Block Groups: 3 
Inodes per group: 1456 
Blocks per group: 8192 
[…] 
Group: 0: 
  Inode Range: 1 - 1456 
  Block Range: 1 - 8192 
[…] 
  Free Inodes: 1444 (99%) 
  Free Blocks: 3379 (41%) 
  Total Directories: 2 
Group: 1: 
  Inode Range: 1457 - 2912 
  Block Range: 8193 - 16384 
[…] 
  Free Inodes: 1456 (100%) 
  Free Blocks: 7477 (91%) 
  Total Directories: 0 
Group: 2: 
  Inode Range: 2913 - 4368 
  Block Range: 16385 - 17391 
[…] 
  Free Inodes: 1456 (100%) 
  Free Blocks: 823 (10%) 
  Total Directories: 0 

 
Given the overall free ratio of group one, the attacker can 
now safely assume that all further blocks in this group up to 
and including block 16384 are not allocated. For diagnostic 
purposes, the md5 checksum over these blocks is created 
using dls. Then the proof-of-concept tool dwrt is used to 
fill the logical disk block sequence 9400-16384 with the 
repeated ASCII sequence ‘IEEE’. Should dwrt encounter 
an allocated block within the specified sequence, an error 
condition would have been raised. The truncated dwrt 
screen output confirms successful hiding of 6MB of data.  
 
Since the original content of these blocks was a sequence of 
zero bytes (vs. zeroizing in listing 1), the repeated 
calculation of  the md5 checksum gives a different result.  
 
Most notably, df and du now report exactly the same disk 
usage figures as in listing 2. That means there is no 
straightforward way for the system administrator to notice 
the hidden data. The final command in listing 4 executes a 
hexdump of block 11111, arbitrarily chosen from the hiding 
sequence, to confirm that the expected ASCII strings can 
indeed be found on disk. 
 
One sitution where the hidden data becomes apparent is 
when the disk fills up entirely, as shown in listing 5.  
# dd if=/dev/zero of=/mnt/fill-up bs=1k 
dd: writing `/mnt/fill-up': No space left on device 
4675+0 records in 
4674+0 records out 
# df -h /mnt 
Filesystem            Size  Used Avail Use% Mounted on 
/dev/sda1              17M  9.7M  6.0M  62% /mnt 
# du -sh /mnt 
8.7M    /mnt 

# dstat -f linux-ext3 /dev/sda1 9400 
Block: 9400 
Not Allocated 
Group: 1 
# dls -e -f linux-ext3 /dev/sda1 9400-16384 | md5sum 
2c2092ed51b9d00f787d3a41cf6c564b  - 
# ../bin/dwrt -f linux-ext3 /dev/sda1 9400-16384 
Block: 9400 
Group: 1 
[...] 
Block: 16383 
Group: 1 
Block: 16384 
Group: 1 
# dls -e -f linux-ext3 /dev/sda1 9400-16384 | md5sum 
43a851c93c8d0a768e88e337b8b485fa  - 
# df -h /mnt 
Filesystem            Size  Used Avail Use% Mounted on 
/dev/sda1              17M  5.1M   11M  33% /mnt 
# du -sh /mnt 
4.1M    /mnt 
# dls -e -f linux-ext3 /dev/sda1 11111 | xxd -c 4 
0000000: 4945 4545  IEEE 
0000004: 4945 4545  IEEE 
0000008: 4945 4545  IEEE 
000000c: 4945 4545  IEEE 
[...] 

Listing 5: File system filling up 
 
Instead of 11MB as expected from the output of df, only 
about 5MB can be written to the file ‘fill-up’. According to 
df, the disk still has 6MB free, yet the file system is 
completely filled up, as reported by the I/O error condition 
in listing 5. 
 
To show that this hiding technique is system-crash-proof, 
the demonstration now continues with power cycling the 
virtual machine.   
# fsck.ext3 /dev/sda1 
e2fsck 1.34 (25-Jul-2003) 
/dev/sda1: recovering journal 
/dev/sda1: clean, 13/4368 files, 10591/17392 blocks 
# dls -e -f linuxt-ext3 /dev/sda1 9400-16384 | md5sum 
43a851c93c8d0a768e88e337b8b485fa  - 

Listing 6: File system check after power cycle 
 
Listing 6 shows the test file system being checked. As 
predicted, fsck.ext3 replays the journal and is able to 
recover from the inconsistencies introduced through the 
power cycle. Thus no full consistency check is performed 



  
 

and the hidden data remains undetected. The md5 
checksum computed at the end of listing 6 confirms that the 
hidden data is still available in its entirety. 

block=16002, b_blocknr=16000 
b_state=0x00000019, b_size=1024 
buffer layer error at fs/buffer.c:502 
Call Trace: 
 [<c0156bef>] __find_get_block_slow+0x8f/0x170 
 [<c0156f28>] __find_get_block+0xb8/0x170 
 [<c4af8947>] ext3_new_block+0x227/0x520 [ext3] 
 [<c4afc17d>] ext3_alloc_block+0xd/0x20 [ext3] 
 [<c4afc54d>] ext3_get_block_handle+0x22d/0x920 [ext3] 
 [<c4ac92ec>] do_get_write_access+0x33c/0x520 [jbd] 
 [<c4afb5a5>] ext3_mark_iloc_dirty+0x1b5/0x3b0 [ext3] 
 [<c4afcc7e>] ext3_get_block+0x3e/0x80 [ext3] 
 [<c0158f7f>] __block_prepare_write+0x1ef/0x470 
 [<c0159216>] block_prepare_write+0x16/0x30 
 [<c4afcc40>] ext3_get_block+0x0/0x80 [ext3] 
 [<c4afd6ee>] ext3_prepare_write+0x3e/0xd0 [ext3] 
 [<c4afcc40>] ext3_get_block+0x0/0x80 [ext3] 
[…] 

 
To discover the inconsistency introduced by the attacker to 
hide his data, fsck.ext3 needs to run with the –f flag to 
indicate a full, time consuming consistency check. This 
check is equivalent to the consistency check of a regular, 
non-journaling file system. In listing 7, the output of this 
command clearly shows the type and area of inconsistency 
as introduced by the attacker. As soon as the inconsistency 
is removed, the 7MB are available again to the regular users 
of the file system. The hidden data remains on disk until is 
finally overwritten during the creation of the file named fill-
2.  

Listing 8: File system driver error message 

B. Usability for the Attacker # fsck.ext3 -f /dev/sda1 
e2fsck 1.34 (25-Jul-2003) 
Pass 1: Checking inodes, blocks, and sizes 
Pass 2: Checking directory structure 
Pass 3: Checking directory connectivity 
Pass 4: Checking reference counts 
Pass 5: Checking group summary information 
Block bitmap differences:  -(9400--16384) 
Fix<y>? yes 
 
/dev/sda1: ***** FILE SYSTEM WAS MODIFIED ***** 
/dev/sda1: 13/4368 files (15.4% non-contiguous), 
10407/17392 blocks 
# mount /dev/sda1 /mnt 
# dstat -f linux-ext3 /dev/sda1 9400 
Block: 9400 
Not Allocated 
Group: 1 
# dls -e -f linux-ext3 /dev/sda1 9400-16384 | md5sum 
43a851c93c8d0a768e88e337b8b485fa  - 
# df -h /mnt 
Filesystem            Size  Used Avail Use% Mounted on 
/dev/sda1              17M  9.7M  6.0M  62% /mnt 
# du -sh /mnt 
8.7M    /mnt 
# dd if=/dev/zero of=/mnt/fill-2 bs=1k 
dd: writing `/mnt/fill-2': No space left on device 
6957+0 records in 
6956+0 records out 
# df -h /mnt 
Filesystem            Size  Used Avail Use% Mounted on 
/dev/sda1              17M   17M     0 100% /mnt 
# du -sh /mnt 
16M     /mnt 
# dls -e -f linux-ext3 /dev/sda1 9400-16384 | md5sum 
79bff29eb565da721cf5c30a880b2379  - 

This attack requires in-depth knowledge about the layout of 
the target file system. It provides the attacker with a long-
lived, “crash-proof” hiding scheme while avoiding the risk 
of accidental overwrites. 

C. Countermeasures 
Unless access to raw disk devices is being audited or 
limited, the chances of this scheme being detected are very 
low: One way of detection or potential loss of hidden data 
would be a system crash with substantial disk corruption, 
resulting in a full consistency check. Such a check would 
immediately notice that the data units occupied by the 
attacker are not being referenced by any inodes (see listing 
7 in the following section). Normal system operation would 
resume and the attacker would have a chance of 
“recovering” his hidden information which is still there but 
now at risk of being overwritten (a very defiant attacker 
would simply proceed to put his data unit allocation 
markings back in place).  
 
Another means of detection could be, as with other 
methods, the administrator comparing the output of the disk 
usage and disk free commands. As the proof-of-concept 
exploit demonstrates below, the attacker may choose not to 
update the summary information from which df appears to 
compute its reports. That means while du only 
summarizes usage of regular, visible files, df would in a 
similar fashion rely only on the adjustments that regular file 
creation or deletion operations would perform on the 
summary information. Therefore, unless the file system 
performs additional “house-keeping” updates of its 
summary information tables, df and du output would 
appear to be perfectly in accordance10. Only if the attacker 
would boldly occupy so much space on disk that a regular 
file creation operation would result in an “out of disk 
space” error condition, the discrepancy between the free 

Listing 7: Full file system consistency check 
 
Since the attacker is directly manipulating file system data 
structures on disk, he should carefully choose areas with 
little or no file system activity. Otherwise the file system 
might realize that the metadata changes he performs 
directly on disk conflict with the same metadata buffered by 
the file system driver. Listing 8 shows an error message 
captured during testing, which hints at such a conflict where 
both the file system and the attack tool write-accessed block 
16002.  

                                                           
10 The amount of housekeeping is highly file system dependent. The tests 
run with ext3 so far would suggest that very little housekeeping is being 
done by this particular file system. On file systems which were known to 
perform a lot of housekeeping, the attacker could actually choose to duly 
update summary information. Thereby he would  trade the risk of 
“housekeeping hickups” showing in the system logs with the risk of df/du 
discrepancies being noticed. 



  
 

disk space reported by df and the disk being totally filled 
up would be recognizable. 

D. Variants of the new hiding scheme 
As briefly mentioned before, instead of just occupying data 
blocks, an attack variant could include the use of inodes in a 
similar fashion.  
 
The technique introduced in this section could also be 
applied to traditional, non-journaling file systems. In that 
case the attacker would risk detection whenever a file 
system check was run. File system checks carried out in 
regular intervals could be avoided by manipulating the 
mount count and last-checked timestamp, but any crash or 
malfunction leaving the file system in an unclean state 
would lead to detection. Additionally, the attacker could 
employ a trojanized version of the file system integrity 
checker, similar to section II.B.7). 

IV. SUMMARY AND CONCLUSIONS 
In contrast to standard hiding methods which are either 
complex to use, easy to detect, limited in storage capacity 
or offer a rather volatile storage capacity, the new scheme 
avoids most disadvantages. In addition, it is not only 
“reboot-proof” but even “system crash-proof”.  
 
Fundamentally, it exploits the fact that journaling file 
systems have – in almost all cases – replaced a full-scale 
consistency check by a much faster journal recovery, which 
only audits recent modifications recorded in the journal. 
This allows for insertion of inconsistencies between file 
system data structures of different categories. These 
inconsistencies are designed to hide information and to 
preserve it from being overwritten. 
 
System administrators of sensitive systems should be aware 
of the security implications of file system technology 
choices and perform detective measures accordingly. 
 
Forensic analysis tools should include specialized file 
system consistency checkers, which ideally perform more 
rigorous checks than the default checking software 
provided by the respective operating system. 

V. ACKNOWLEDGEMENTS 
The authors would like to thank Brian Carrier, John 
Collura, Ian Davies, and Andreas Thümmel for reviewing 
the manuscript and providing insightful comments. 

VI. REFERENCES 
[1] Best, S., Kleikamp, D., “JFS Layout“, IBM developerWorks, May 

2000, Available at: www.ibm.com/developerworks/opensource/jfs, 
viewed Jan 2005 

[2] Carrier, B. “An Investigator’s Guide to File System Internals”, 
FIRST Conference on Computer Security, Incident Handling & 
Response, June 2002, Available at: www.first.org/events/progconf/ 
2002/d1-02-carrier-slides.pdf, viewed January 2005 

[3] Carrier, B. “Defining Digital Forensic Examination and Analysis 
Tools using Abstraction Layers”, International Journal of Digital 
Evidence, Volume 1, Issue 4, Winter 2003. 

[4] Carrier, B. “File System Forensic Analysis”, Addison-Wesley, 
2005. 

[5] Chutani, S. et al, “The Episode File System”, Proceedings of the 
USENIX  Winter 1992 Technical Conference, p 43-60, Available at: 
citeseer.ist.psu.edu/chutani92episode.html, viewed March 2005 

[6] Eckstein, K. “Forensics for Advanced UNIX File Systems”, 
Proceedings of the 5th IEEE Information Assurance Workshop, 2004 

[7] Farmer, D. and Venema, W. “Forensic Discovery, Addison-
Wesley, 2004 

[8] McDonald, A. and Kuhn, M. “StegFS: A Steganographic File 
System for Linux”, IH'99, LNCS 1768, pp. 463-477, Springer Verlag, 
2000, available at www.cl.cam.ac.uk/~mgk25/ih99-stegfs.pdf 

[9] Pate, S. D. “UNIX Files Systems, Evolution, Design and 
Implementation”, Wiley Publishing, 2003 

[10] Pelcher, B. “Hidden Data is Evidence too”, SANS GIAC GCFA 
practical, 2004, Available at 
www.giac.org/practical/GCFA/Bob_Pelcher_GCFA.pdf, viewed 
March 2005 

[11] Ruiu, D. “Active Forensics: Tracking that Intruder”, Jan 2001, 
available at staff.washington.edu/dittrich/misc/active-forensics.txt, 
viewed March 2005 

[12] The Grugq, "Defeating Forensic Analysis on Unix", Phrack 
Magazine, Volume 10, Issue 59, July 2002, Available at 
www.phrack.org, viewed March 2005 

[13] The FreeBSD Documentation Project “The FreeBSD 
Handbook”, available at 
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/, , 
viewed March 2005 

 

http://www.cl.cam.ac.uk/~mgk25/ih99-stegfs.pdf

	Introduction
	Known Hiding Techniques
	Media Management Layer
	Using unused media areas
	Mounting on non-empty directories

	File system layer
	File system category
	Data unit category: Slack space
	Metadata category: Use reserved inodes
	Metadata category: Extended file attributes
	File name category: “Special” filenames
	File name category: Removal of open files
	Metadata/File name category: Hide in deleted inodes plus trojan fsck

	Application Layer
	Obfuscated Loopback Filesystems
	Unused spaces in application file formats
	Steganography

	Summary of known hiding techniques

	New Scheme: Deliberate FS Inconsistencies
	Proof of concept demonstration
	Usability for the Attacker
	Countermeasures
	Variants of the new hiding scheme

	Summary and conclusions
	Acknowledgements
	References

