
Improvement of IP-based MANET Emulation1 
 

Henning Rogge, Alexander Wenzel, 
Gabriel Klein, Marko Jahnke 

Research Institute for Communication, 
Information Processing and Ergonomics (FKIE) 

D-53343 Wachtberg, Germany 
E-mail: {rogge, lenze, g.klein, jahnke}@fgan.de 

 
 
ABSTRACT 

This contribution presents a MANET emulation environment that is able to combine real hardware nodes 
with an arbitrary number of virtual instances implemented using virtualization technologies. The 
environment is able to assign pre-recorded or calculated sequences of geocoordinates to the respective nodes 
and emulates the communication behavior of the MANET with respect to a selectable radio wave 
propagation model and other conditions. The environment provides flexible testing and evaluation 
capabilities of real-world software implementations running on MANET nodes. Our solution provides a 
remarkable level of realism and reproducibility while ensuring sufficient practical deployability.  
 
KEYWORDS: Motion emulation, virtual testbed, semi-virtual testbed, reproducible node motion, 
node location awareness, real software deployment 

1 INTRODUCTION 
Testing and evaluating software for mobile ad hoc networks (MANETs) is a non-trivial task. It 

can be performed by using actual hardware, by simulation, or by emulation. Testing prototype 
software for mobile mesh nets on real hardware nodes is both expensive and inflexible. Also, most 
hardware testbeds are unable to emulate moving nodes and limit the reproducibility of the results 
because of interference by other devices and persons. Pure simulation or virtual machine testbeds 
may not model real hardware correctly which limits the usefulness of the results. Emulation tries to 
combine the advantages of both approaches mentioned before. In some wireless network emulators, 
only the lower OSI layers are simulated, allowing the use of real-world software and protocols on 
the upper layers. 

Overall, very basic requirements for software testing can be formulated: 
• Realism. To be able to test software components under realistic conditions, it is necessary to 

provide environments which are very close to a later deployment scenario. In MANETs, these 
scenarios do not only comprise the hardware and operating system platforms of the nodes and 
their ‘typical’ usage in terms of running applications and services. The motion of the nodes and 
the resulting dynamics (in terms of changing network topology, unstable links, and fragile 
connections) and other environmental influences also need to be considered. 

• Reproducibility. For being able to compare measurement results, scenarios need to be 
reproducible. Obviously, the effort for moving actual MANET nodes in a representative 
deployment area is quite high, and guaranteeing the exactness of the motion is almost 
impossible. This is also the case for the external influences on the radio transmissions. 

• Representativeness. For representative tests, the conditions for the aforementioned 
environmental factors need to be determined. This is relatively easy for hardware and software 
components. For motion sequences and the application and service usage behaviour, pre-
recorded motion and traffic sequences might be deployed, but they are by their very nature 
restricted to a snapshot of a real-world scenario. Using statistical models, based on a sufficient 
number of observations, can be more appropriate for evaluation purposes. 

Within the collaborative research project ‘RITA’ (Responsive Intrusion detection for Tactical Ad 
                                                 
1 To appear in: Proc. of the Military Communication Conference (MCC2009), Prague, Czech Republic, Sep. 2009. 



hoc networks, [9]), different interconnected software components are being developed and need to 
be evaluated with respect to the requirements specified above. In this context, it was desired to have 
both a larger number of MANET nodes for realistic scenarios and a smaller number of costly 
hardware nodes for demonstration purposes in one single setup that is able to be switched into 
different operation modes. As a result of our development efforts, we have created the Motion-
EmuNG emulation environment that is able to cover most of the requirements. 

The rest of this contribution is structured as follows: Section 2 discusses different approaches to 
face the above challenges as published in literature. In section 3, we explain the architecture of 
Motion-EmuNG. Section 4 presents three different application setups that we have used for 
evaluation and demonstration purposes. In section 5, we present performance details of our 
implementation. This is followed in section 6 by a discussion of the advantages and disadvantages 
of our solution. Finally, section 7 concludes with results that have been achieved so far, and points 
out different important aspects of our future work. 

2 RELATED WORK 
We looked at a number of free software tools which have been used for mesh net research, but 

each of them had some issues with our existing project work. 
NS-2 [17] is one of the main simulation tools for mesh network simulations and can also be used 

for network emulation. It was designed for simulating and emulating multiple types of wired 
networks, but has also been adapted for wireless networks such as IEEE 802.11. The University of 
Magdeburg, Germany, has published an extension [13] for the emulation mode to allow NS-2 to be 
used as a network backbone for a number of virtual machines. Unfortunately, NS-2 was not 
designed for real-time emulation, therefore the performance is low. Together with the complexity of 
the combined C++/OTcl source code which prevents easy modification this prohibits its use for 
large-scale MANET emulations. 

The Netem framework [21] has been a part of the Linux kernel since version 2.6.8 and can be 
used to simulate network delay, packet drop and reordering directly on a network interface. As a 
kernel module it has a good performance, but it lacks important features such as node movement, 
the support of geographic coordinates, and the ability to integrate external hardware nodes. 

NCTUns [22] is a complex network emulation and simulation tool with a graphical user interface 
developed by a team at the National Chiao Tung University in Taiwan. It is based on a modified 
Fedora Linux core and supports multiple protocols and standards on different OSI layers. It can be 
used to connect real software instances with simulated networks in real-time. However, its 
complexity and the need for a specific operating system version make NCTUns difficult to integrate 
into existing testbeds.  

A comparable approach is pursued by Ahrenholz et al. [1]. They propose a framework for 
emulating MANET nodes on multiple machines throughout a wired network. However, their 
approach requires the use of a custom virtual network stack, which inhibits easy portability. 

Similar proposals [11, 15, 19] offer solutions for emulating MANET nodes, but lack features 
such as GPS location awareness or the ability to incorporate entire virtual operating system 
instances into the emulation. Virtual MANET emulations are often limited to the routing protocol 
itself or a few chosen applications but ignore the effects of the operation system on each node. 

In our earlier work [10], we have already proposed a motion emulation framework based on a 
client/server design. Our previous approach was realized using client-side packet filtering by means 
of the NetFilter-IPTables subsystem. No connectivity to the emulation server was required after the 
initiation of the emulation, but all client nodes required full connectivity with each other. However, 
due to the Perl implementation, portability to small handheld devices was severely limited. In 
addition to this, the old approach was incompatible with the use of libpcap in client programs, 
which prevented us from using the same programs for emulation and real networks. This adds 
unnecessary complexity to prototype development and limited the comparability of emulation 
results with live tests. 

The solution presented in this paper builds on our previous work. We follow a centralistic 



approach and enable easily plugging in custom radio propagation models. [12] and [14] present 
related solutions. 

3 ARCHITECTURE 
The Motion-EmuNG environment is based on a packet 

distribution server with clients on each of the hosted 
nodes (see Figure 1), spanning up virtual network 
interfaces for applications on the node. The clients also 
provide the current geocoordinates to local applications 
using the GPS daemon interface. For each IP packet 
transmitted by a node, the server asks a component 
called “packet oracle” whether the packet is to be 
delivered under the current conditions (e. g. wave 
propagation model, position, distance, obstacles …). 
The only prerequisite is connectivity between the server 
and all clients. This facilitates the distribution of nodes 
participating in the emulation throughout multiple 
networks or using multiple hosts running virtual 
machines. 

Motion-EmuNG operates entirely on the IP layer. It is 
thus platform independent and does not necessitate 
specific layer 1 or layer 2 technologies. A very 
advantageous consequence of this is the ability to 
dynamically exchange the underlying transmission 
technology. For example, a wired evaluation and testing 
setup in which MANET nodes are connected via 
Ethernet cables could easily be transformed into a 
demonstration setup with IEEE 802.11 connectivity 
between the nodes. 

3.1 Emulation Server 
The emulation server is the central instance which is responsible for packet relay between 

communicating MANET nodes. It has permanent TCP connections to all clients in the emulation, 
receives the packets transmitted by the corresponding nodes in the network and then decides on a 
per-packet basis whether the packet is dropped or whether it reaches any/all of the other nodes in 
range.  

This decision is made by a software component called a packet oracle. The oracle takes an 
input/output pair of node IDs as its input and determines whether the packet in question will be 
received or not. Within the oracle, the decision is based on two factors. First, the nodes current 
geographic locations are considered. These discrete waypoints are specified in a motion scenario 
file and stored in a location database before the start of the emulation. Since the file contains only 
waypoint information, interpolation needs to be performed between two waypoints. The second 
factor is the radio propagation model implemented within the oracle. The emulation server currently 
supports three exchangeable oracles, which implement different packet drop conditions: 
• Full connectivity. All packets reach all nodes, irrespective of the nodes' locations. 
• Limited range connectivity. Nodes have full connectivity with no packet drops until a certain 

distance between them is exceeded. Beyond that, all packets are dropped. 
• Connectivity depending on radio propagation model. The packet drop probability is based on 

accommodates distance-dependent effects, e. g. by log-normal shadowing, and on small-scale 
effects such as atmospheric disturbances, e. g. Ricean fading. 

In our implementation of the third oracle type, we have realized the log-normal large-scale 
fading effects by using a predetermined probability distribution. Since IEEE 802.11 employs MAC-

Figure 1: Motion emulator components



layer retransmission, the oracle simulates multiple transmissions to deliver the packet and calculate 
the drop rate. We have also tested an oracle with small-scale fading effects, but the results do not 
differ from the probabilistic packet oracle without implementing MAC-layer collisions.  

Customized oracles can be easily developed and integrated into the server, because the server 
requires the packet oracle to implement only a single method. 

In support of the evaluation requirements of the applications illustrated in section 4, we have also 
integrated the following features: 
• Server-triggered GPS updates for each waypoint with client-side interpolation 
• Scripted timer-based execution of client applications. Thus, automated network protocol and 

application evaluation is facilitated. 
• Restarting of the server component without reconfiguration of the clients. Network 

components on the nodes will just detect a short period of disconnection and a jump of the GPS 
position. 

• Logging the amount of layer 2 traffic at the emulation server. 

3.2 Emulation Client 
The emulation client is the emulation architecture component running on every MANET node. It 

creates a virtual network device which is used to communicate with other nodes within the 
emulation. The emulation client tunnels traffic sent to this device to the server through a 
permanently maintained TCP connection. There, according to the emulation parameters, the 
decision is made which subset of nodes is within radio range (cf. sect 3.1). The reception of packets 
works in a similar manner. The packets are read from the TCP connection on the real network 
interface and forwarded to the TAP device. 

The emulation clients exhibit a great measure of resilience where loss of server connectivity is 
concerned. Should the connection to the server be deactivated, this results in local processes 
detecting a disconnection from the emulated MANET. Once the TCP connection is re-established, 
processes can also reconnect to the emulated MANET. There are a variety of reasons for such 
disconnections, for example, network fragmentation when IEEE 802.11 is used as a backbone, or 
when the backbone network is being reconfigured from the server side. 

Similarly, client processes themselves are not affected if the server should become unavailable. 
This only entails consequences for communicating local applications, as the will lose their network 
connectivity. 

During the initialization phase of the client, a local GPS daemon application can be launched 
which local processes can query. They can thus be made location aware by the location updates sent 
to the client by the server. 

The client has the ability to initiate local processes. This is controlled by the emulation server 
and enables automatic and unattended execution of applications on the client during the scenario. 

3.3 Packet Transfer Procedure 
Consider the following scenario (cf. figure 1): Hardware node #1 (A) wishes to send a packet 

with virtual node #1 (B) as the destination. The packet is first written to the TAP interface (A1) 
created by the emulation client on the hardware node. Via the connected backbone network to 
which the node is connected through an actual radio interface (A2), this packet is tunneled to the 
emulation server (C). The physical location of the emulation server is irrelevant to the emulation 
and is dictated only by backbone network connectivity. In the scenario depicted in Figure 1, the 
emulation server is running on the system also hosting the virtual MANET nodes. 

At the server, the packet is received by the packet processor (C1) and the packet oracle (C2) is 
queried whether the packet should be relayed. The oracle makes this decision based on the current 
geographic coordinates of hardware node #1 and virtual node #1 along with the pre-loaded radio 
propagation model. Furthermore, the oracle differentiates between unicast and broadcast traffic, 
thereby approximating the effects of IEEE 80211 retransmissions. 

If the oracle decides that the two nodes are within radio communication range, the packet 



processor sends the packet to the interface bridge (D) located on the virtual machine host. The 
bridge then forwards the packet to the network interface of virtual node #1 (B1) where it is received 
by the emulation client and forwarded to the TAP interface (B2) used by local applications. 

4 APPLICATIONS 
The architecture described above offers the flexibility to easily adapt to different scenarios. The 

server and clients of our emulation solution may be spread throughout an entire network or hosted 
as virtual machines on a single server machine. In this section we illustrate two testbed instances we 
envision. 

4.1 Virtual Testbed 
This section illustrates our virtual testbed approach and describes the hardware and software 

setup along with measurement scenarios for which it has been successfully used. 
Our purely virtual testbed consists of 15 virtual machines hosted on a server with a quad-core 

2.80 GHz processor with 4 GB of RAM running Debian Lenny Linux. Our emulation framework 
allows us to use a standard distribution without any modifications or patches. 

We employ the OpenVZ [18] kernel-based virtualization software, as it provides an easy way to 
handle large numbers of virtual nodes with a real software base. All virtual machines contain a 
regular Debian Lenny installation, although applications requiring a GUI were left out. 
Additionally, the RITA MANET IDS [9] along with the network management protocol SNMPv3 
[4, 5] and an OLSR [6] routing daemon are installed. The containers are connected via a Linux 
Ethernet bridge. 

The described testbed was used successfully for performing long-term measurements and 
evaluations of the RITA software components. Two of these are described in more detail below. 

For the different measurements we used different motion models, which are loaded into the  
Motion-EmuNG server: the very generic Random Waypoint motion model (RWP [2,3]) and a motion 
sequence which was generated for a very specific scenario, in our case a military hostage rescue 
situation (HR scenario, [9]) which is characterized by phases of different node mobility. 

One of our test cases was the evaluation of a Message Engine component that is deployed on all 
MANET nodes and is tasked with transmitting alarm messages from locally installed detectors to a 
specific server node. We evaluated the time required to process alert messages in the Message 
Engine and measured the reliability of the alarm message transport using both motion models 
mentioned above. In addition to this, we also evaluated a robust flooding mechanism to deliver the 
messages to the server node in case of denial of service attacks. 

Another evaluation we performed in the virtual testbed was that of a watchdog tool that monitors 
neighbor nodes in the MANET and detects whether they modify or do not correctly forward 
protocol packets along multi-hop routes. The aim of our tests was to improve the detection rate and 
minimize the occurrence of false positives by determining a notification threshold. 

During both of the tests described above, we used a routing-blackhole application which 
broadcasts fake routing messages throughout the network to disrupt as much unicast traffic as 
possible. The benefit of our emulation environment is the ability to use programs implemented for 
attacking real-world systems. 

4.2 Semi-virtual Testbed 
In this section, we describe a modification of the purely virtual testbed introduced above. This 

setup was developed mainly for demonstration purposes but can also be used for software and/or 
protocol evaluation and testing. 

In this setup, we combine five virtual OpenVZ nodes with Internet Tablets running on a 400 
MHz ARM CPU and 128 MB memory. The virtual nodes are hosted on a notebook computer 
equipped with a dual-core 2 GHz processor and 2 GB of RAM. 

The installed software base was identical to the one described in sect. 4.1. Additionally, the 
handheld devices were equipped with two applications with graphical user interface: a VoIP client 
and a command & control information system. 



We have successfully demonstrated our hardware setup at two international events, 
corresponding to the two hardware configurations mentioned above. 

Both at the 2008 NATO Coalition Warrior Interoperability Demonstration [7] and during a demo 
session at the MobiCom 2008 [16], we presented various malicious activities and attacks against 
tactical MANETs and the corresponding RITA intrusion detection mechanisms: 
• Anomalous network traffic patterns produced by a port scan on a MANET node are recognized 

by CBAD [20], a detection method based on clustered traffic graphs. 
• A blackhole attack on the OLSR routing protocol is detected by TOGBAD [8], which performs 

a centralized plausibility check of routing messages that is based on the creation and analysis 
of network topology graphs. 

• An attack on the relaying of packets required in a multi-hop network is demonstrated by a 
malicious node dropping packets of a VoIP stream. The RITA watchdog monitors the relay 
behavior of all nodes and detects when packets are dropped. 

All three attacks can be easily carried out with as-is software. The packet drop attack can be 
demonstrated particularly well in our emulation environment, because due to the use of real VoIP 
software, the loss of single or multiple packets is audibly recognized through reduced audio quality. 

With the aid of our MANET emulation framework, we were able to display the effects of larger 
numbers of MANET nodes without having to invest in a corresponding number of hand-held 
devices. The ability to integrate actual hardware devices with virtual nodes facilitates more 
successful demonstrations. 

5 PERFORMANCE 
The emulation server is the central component of our architecture where packet relay is 

concerned. We have evaluated it with regard to packet throughput in three different scenarios, since 
it is potentially the single point of failure. 

All measurements were performed on a Debian Lenny system equipped with a 3.4 GHz 
processor running 15 virtual OpenVZ nodes. In all three cases, we measured the number of packets 
processed by the server during a flood ping from a single node with a packet size of 100 bytes. 

The first scenario uses the “Hub” oracle, 
which simply forwards the packets to all other 
nodes. We observe a throughput of 30,000 
packets/s. As expected, about 1/15 are recep-
tions (read) and 14/15 are transmissions 
(write). The packet transmission rate is 2,200 
packets/s. 

In the other two cases, the fading oracle 
was used together with static nodes arranged 
as depicted in figure 2. 

In the first fading scenario (“Fading – S”), 
the ping is sent from node to the neighbor node B (single-hop). The overall performance of the 
emulation server is slightly reduced (29,000 packets/s), but the rate at which the client sent packets 
is increased by 65 % to 3,300 packets/s. 

During the last scenario (“Fading – M”), the ICMP packets were sent from node A to node C. 
Since this involves a multi-hop route, the server has to forward the packet multiple times. The 
overall server relay rate is increased to 30,500 packets/s, and the rate at which packets were sent by 
node A has also increased to 3,700 packets/s. 

In general, we observed that the overall performance of the emulation server is bounded by the 
number packets that it its host operating system can relay. In situations with high traffic volume, the 
CPU resources required by the operating system are close to 100 %. This is due to the fact that 
currently the relaying of packets in the server cannot be spread to multiple CPU cores. Thus, the 
performance of the emulation server is not dependent on the speed of the entire processor, but rather 
that of a single core. 

Figure 2: Hostage rescue scenario snapshot



Another observation we have made is that the use of the more complex oracle increased the 
maximum throughput measured by the sender. This is because the geographic locations of the nodes 
were further apart, and the packets sent by each node had fewer neighbors within radio range. 

6 DISCUSSION 
The use of our MANET emulator permits real-time hardware and software operation without 

additional patches to applications or the operating system. This ensures a high level of realism on 
the application level and does not carry the risk that simulation results (as in event-based simulators 
such as NS-2 [17]) are distorted or even falsified due to simplifications or abstractions within the 
simulation engine or the protocols implemented therein. 

Our emulation framework was intentionally designed as a lightweight tool to make the emulation 
network independent of the underlying backbone network. This facilitates the inclusion of different 
kinds of external devices via different transmission technologies as IEEE 802.11, USB, or Ethernet, 
even dynamically switching between different backbone connections. This is especially useful in 
demonstration environments, where node mobility is an important aspect. 

The fact that all packet processing and distribution logic is concentrated at a central server gives 
rise to multiple further advantages. This includes an easier maintenance and debugging procedure. 
Moreover, the server can easily be extended with different, more complex, or scenario-specific 
radio propagation models. This is especially useful from a military point of view where troop 
deployment scenarios in different locations, e.g. indoors or outdoors, warrant different radio 
propagation characteristics. The emulation server also provides a central logging point which can be 
used for the monitoring of traffic flow. Combined with the scripting of remote executing 
applications on all clients, this supports the validation of protocols and/or applications under 
development through extensive and repetitive emulation runs. 

 All nodes' geographic coordinates are specified at discrete locations in a motion scenario file. 
Location updates are sent as waypoints from the server to its clients in a synchronized manner. 
Clients interpolate their current location by interpolating between these waypoints and feed a local 
GPS daemon. Thus, applications running on the clients are constantly aware of their precise 
geographic coordinates when connected to the server. 

When analyzing potentially very large motion scenarios, it is often desirable to focus only on 
specific, arbitrarily short parts of these scenarios. Therefore, our emulation solution supports fast 
“fast-forward” and “rewind” operations so that only the scenario's portions of interest are emulated. 
An additional feature is the fast or slow motion execution of the emulation. This allows the scenario 
to be “played” at different speeds. From a military perspective, this is especially useful, for example 
to demonstrate the effect of troop movement speed on connection properties. To the best of our 
knowledge, our approach is unique in this fashion. 

Unfortunately, despite the above-mentioned numerous advantages, our approach also has certain 
disadvantages. 

Due to the centralistic nature of our design, the server is a potential bottleneck. In situations with 
large amounts of traffic this could result in MANET nodes observing considerable packet delays or 
even packet loss if the server receives packets faster than they can be processed. Scalability could 
be affected by this potential single point of failure. 

Furthermore, the entire packet distribution and reception mechanisms are implemented in the 
user memory space. The reason for this was to facilitate portability between different platforms, 
since no specific kernel modules need to be created. However, due to this, extra time is required to 
copy packets back and forth between the user and kernel memory space. 

Thus far, Motion-EmuNG does not emulate layers 1 and 2 of IEEE 802.11 directly, but replaces 
layer 1 effects with a stochastically approximated packet drop. Notably, it does not emulate layer 2 
control traffic, e. g. IEEE 802.11 beacons and acknowledgements, radio signal strength, packet 
collisions and wireless driver runtime parameters. These aspects should be incorporated into future 
versions of our emulation framework. 

When compared to our previous motion emulation solution, we observe several significant 



differences. 
The filtering of packets which now takes place solely on the server was formerly performed by 

each client individually, which removes the need for clients to install custom-made kernel patches 
or modules, e.g. the NetFilter-IPTables module for packet filtering in OpenVZ. 

Additionally, the need for peer-to-peer connections between communicating clients is removed, 
since a client needs a connection only to the emulation server. This lifts a burden on the network 
design, as clients can now be distributed throughout the network, possibly even in different subnets. 

In our previous implementation, the connection between two clients was severed during the 
emulation if these clients were not reachable according to their geographic location and the selected 
radio propagation model. Via the backbone network, all nodes can still be accessed through a 
separate interface than the one carrying the emulation traffic. This makes it easy, for example, to 
perform maintenance tasks or manually reconfigure devices should the need arise. 

The NCTUns network simulator and emulator [22] can provide similar functionality as Motion-
EmuNG. However, due to its requirement of a dedicated Fedora Linux server, we observe 
deployment issues. Also, this server does not distribute GPS coordinates and thus simulated and 
emulated nodes as well as attached hardware nodes are not location aware. 

Other MANET emulation tools [1, 11, 15, 19] were implemented with similar goals in mind. 
Single Motion-EmuNG features are present in many of these but lack others and thus the resulting 
comfort and flexibility. 

The feature set of the NRL MANET emulator MANE [14] is very close to that of Motion-EmuNG, 
but is more optimized for clustered virtual machines and not for combination with real hardware. 

Taking into consideration the aforementioned advantages and disadvantages, we feel that our 
motion emulation solution fulfils the requirements for a MANET testbed. Although the effects of 
OSI layers below the network layer are not explicitly taken into account, they can be approximated 
to a certain extent by randomized dropping of packets to represent small-scale fading and 
calculating total success rates for multiple retransmissions of unicast traffic. 

7 CONCLUSION AND FUTURE DIRECTIONS 
Due to shortcomings of existing MANET emulation and simulation environments for tactical 

MANETS, we have developed Motion-EmuNG, a platform-independent and highly flexible, motion-
capable MANET emulation framework for IP-based network traffic. It can easily integrate arbitrary 
numbers of real and/or virtual MANET nodes into a single emulation in a dynamic manner. Node 
positions and movement are specified at a central server which determines connectivity between 
sending and receiving nodes according to their geographic locations and a pre-loaded radio 
propagation model. 

We have carried out emulation runs for a variety of very MANET-specific evaluation and 
measurement scenarios for components of a MANET intrusion detection system developed in our 
lab and have established the viability of our emulation solution for these tasks. 

For our purposes, this new framework is superior to other comparable environments in that it 
enables us to use as-is software components in our test cases. Combined with the ability to conduct 
real-time observations of running protocols and software, this increases the achieved level of 
realism. The addition of the GPS location distribution functionality relieves us of the need to 
expend resources for the distributed, synchronized generation of exact geographic coordinates, as 
this is performed by the central emulation server component. What is more, the server-side 
scriptable starting and stopping of applications facilitates the exact automated, time-controlled 
supervision of MANET nodes. Complex scenarios with intricate communication patterns can thus 
be emulated without the need for manual intervention. 

Future work on Motion-EmuNG includes the integration of more precise radio propagation 
models and the inclusion of non-MANET emulation participants such as nodes to which one or 
more MANET nodes has a WAN connection. Furthermore, we aim at integrating layer 2 effects 
such as medium collisions. On an architectural level we are planning the use of UDP channels 
between the emulation server and its clients, through which the use of broadcast transmissions can 



significantly increase the packet relay rate. 

8 ACKNOWLEDGEMENTS 
This work was sponsored in part by the Federal Office for Information Management and 

Information Technology of the German Bundeswehr, ITAmtBw. 

9 REFERENCES 
[1] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim. CORE: A Real-Time Network Emulator. In 

Proc. of IEEE Military Communications Conference, 2008. MILCOM 2008., San Diego, CA, USA, 
November 2008. 

[2] F. Bai, N. Sadagopan, and A. Helmy. The IMPORTANT Framework for Analyzing the Impact of 
Mobility on Performance of Routing for Ad Hoc Networks. Ad Hoc Networks Journal, 1(4):383-403, 
November 2003. 

[3] D. M. Blough, G. Resta, and P. Santi. A statistical analysis of the long-run node spatial distribution in 
mobile ad hoc networks. Wirel. Netw., 10(5):543-554, 2004. 

[4] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and Applicability Statements for Internet-
Standard Management Framework. RFC 3410 (Informational), December 2002. 

[5] J. D. Case, M. Fedor, M. L. Scho_stall, and J. Davin. Simple Network Management Protocol (SNMP). 
RFC 1157 (Historic), May 1990. 

[6] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). RFC 3626 (Experimental), 
October 2003. 

[7] NATO Coalition Warrior Interoperability Demonstration 2008. Euskirchen, Germany, June 2008. 
[8] E. Gerhards-Padilla, N. Aschenbruck, P. Martini, M. Jahnke, and J. Tölle. Detecting Black Hole 

Attacks in Tactical MANETs using Topology Graphs. In LCN '07: Proceedings of the 32nd IEEE 
Conference on Local Computer Networks, pages 1043-1052, Washington, DC, USA, 2007. IEEE 
Computer Society. 

[9] M. Jahnke, G. Klein, A. Wenzel, N. Aschenbruck, E. Gerhards-Padilla, P. Ebinger, S. Karsch, and J. 
Haag. MITE - Manet Intrusion Detection for Tactical Environments. In Proc. of the NATO/RTO IST-
076 Research Symposium on Information Assurance for Emerging and Future Military Systems, 
Ljubljana, Slovenia, 2008. 

[10] M. Jahnke, J. Toelle, A. Finkenbrink, A. Wenzel, E. Gerhards-Padilla, N. Aschenbruck, and P. Martini. 
Methodologies and Frameworks for Testing IDS in Adhoc Networks. In Proc. of Q2SWinet'07, Crete, 
Greece, October 2007. 

[11] W. Jiang and C. Zhang. A portable real-time emulator for testing multi-radio manets. International 
Parallel and Distributed Processing Symposium, 0:145, 2006. 17 Literaturverzeichnis 

[12] B. B. Luu, R. L. Hardy, and G. T. Tran. A technique for determining radio-signal propagation in an 
emulated wireless environment. In Proc. of IEEE Military Communications Conference, 2008. 
MILCOM 2008, San Diego, CA, USA, November 2008. 

[13] D. Mahrenholz and S. Ivanov. Adjusting the ns-2 Emulation Mode to a Live Network. In Proc. of 
KiVS'05, 2005. 

[14] Mobile Ad-hoc Network Emulator (MANE). http://cs.itd.nrl.navy.mil/work/mane/index.php, November 
2008. 

[15] M. Matthes, H. Biehl, M. Lauer, and O. Drobnik. Massive: An emulation environment for mobile ad-
hoc networks. In WONS '05: Proceedings of the Second Annual Conference on Wireless On-demand 
Network Systems and Services, pages 54-59, Washington, DC, USA, 2005. IEEE Computer Society. 

[16] The 14th Annual International Conference on Mobile Computing and Networking, Demo session. San 
Francisco, CA, USA, September 2008. 

[17] The network simulator ns-2. http://www.isi.edu/nsnam/ns/, November 2008. 
[18] OpenVZ - A container-based virtualization for Linux. http://wiki.openvz.org/, November 2008. 
[19] M. Puzar and T. Plagemann. NEMAN: A Network Emulator for Mobile Ad-Hoc Networks. In ConTEL 

2005. Proceedings of the 8th International Conference on Telecommunications, volume 1, pages 155-
161, March 2005. 

[20] J. Tölle. Intrusion Detection durch strukturbasierte Erkennung von Anomalien im Netzverkehr. Ph.D. 
thesis (German), University of Bonn, Germany, 2002. 

[21] G. Valadon, R. Wakikawa, and H. Esaki. Emulating small scale MANET topologies. In Proc. of OLSR 
Interop2005, 2005. 



[22] S. Y.Wang, C. L. Chou, Y. H. Chiu, Y. S. Tseng, M. S. Hsu, Y. W. Cheng, W. L. Liu, and T. W. Ho. 
NCTUns 4.0: An Integrated Simulation Platform for Vehicular Trac, Communication, and Network 
Researches. In 1st IEEE International Symposium on Wireless Vehicular Communications, October 
2007. 


