
AN OPEN AND SECURE INFRASTRUCTURE FOR DISTRIBUTED
INTRUSION DETECTION SENSORS*

Marko Jahnke
Research Establishment for Applied Science (FGAN)

Research Institute for Communication, Information Processing and Ergonomics (FKIE)
Neuenahrer Str. 20, D-53343 Wachtberg, Germany

E-mail: jahnke@fgan.de

* Published in: Proceedings of the NATO RCMCIS´02.

ABSTRACT

Although a few distributed Intrusion Detection
Systems (IDS) allow integration of 3rd party
sensors and analyzing modules, it is rarely
possible to deploy arbitrary programs or
processes within a distributed IDS architecture.
Even if 3rd party components may be integrated,
they are not protected against attacks (beside their
own capabilities), although these issues are
nowadays very important within heterogeneous
high-assurance networks.

This paper describes a universal, secure and
extensible infrastructure for distributed sensor
applications, primarily focussed on, but not
limited to IDS. A full modular design allows easy
adaptation and integration of sensor data
preprocessing, analyzing and storage components
as well as response mechanisms and
communication protocols. Additionally, a generic
sensor adapter design allows virtually any sort of
external program to be deployed as a sensor,
protected by the infrastructure against process
termination and unauthorized configuration
tampering.

The described prototypical instantiation
implements a hierarchical IDS architecture and
currently supports the IETF conforming IDMEF
data format (Intrusion Detection Message
Exchange Format), transmitted over IAP
(Intrusion Alert Protocol). Adapters for the
“snort” network sensor and the “logsurfer”
logfile analyzer as well as for other command-line
tools have been implemented.

1. INTRODUCTION

For several tasks, it is necessary to have
distributed sensors at some places in a
network. Sensors gather information which is
needed to describe state parameters of a

system. An integrated analyzer stage examines
the sensor data in order to determine if a
previously defined condition is fulfilled, e.g. if
a certain threshold for the sensor data is
exceeded. In this case, the analyzer generates a
so-called event, or, in terms of intrusion
detection, an alert. Thus, from a more general
point of view, events are equivalent to sensor
data on a higher abstraction level.

The majority of distributed IDS has chosen
a centralized architecture with different types
of sensors, where local entities (frequently
called agents) collect the sensor events within
one host system, preprocess it, and send it over
the network to a central command-and-control
entity (console or manager) which then
analyzes, stores and displays the received data.
In other systems, like in AAFID [17], so-called
autonomous agents can additionally include
analyzer capabilities. If they primarily
communicate with each other, rather than with
a central controlling entity, they are called
cooperating agents.

A few systems, like EMERALD [13], use
an open modular design, with an API for
integrating sensors and analyzing components.
The STAT project provides an infrastructure
(MetaSTAT [18]) with on-line configurable
sensors. Generally, deploying arbitrary
programs or processes for sensor data
acquisition and protection services for 3rd
party sensors are not foreseen.
This paper describes our approach for an open
infrastructure for arbitrary distributed sensors.
Due to its universal character, it may be used
as a technical basis (or “toolbox”) for different
IDS architectures. Section 2 of this paper lists
the design requirements for a distributed IDS.

- 2 -

In section 3, the necessary abstract components
and their instantiation in a hierarchical IDS
architecture are described. In section 4, the
different requirements for the deployed
communication protocols and possible
solutions are outlined. Section 5 describes a
generic sensor adapter design which can easily
be adjusted for virtually any sort of program or
process to act as a sensor. In section 6, there
are some basic techniques shown to protect the
architecture components against possible
attacks. Section 7 describes a prototypical
implementation of a hierarchical IDS
architecture with both host based and network
based sensors. Finally, there are some initial
results and possible future work presented.

2. DESIGN REQUIREMENTS

Before designing and implementing an IDS
infrastructure, it is necessary to collect all
relevant requirements. As described in [5], and
furthermore in [17], the following general
requirements for (distributed) IDS exist:
(R1) Continuous Running. The IDS must run

continuously without human super-
vision.

(R2) Fault Tolerance. The IDS must be able
to recover from hardware and software
system crashes.

(R3) Resist subversion. The IDS must be
able to detect attacks against itself.

(R4) Minimal Overhead. The IDS must not
have an effect on the performance of
the system it protects.

(R5) Configurability. The IDS must be able
to enforce a changed security policy.

(R6) Adaptability. The IDS must be able to
be adapted for changes in system or
user behaviour over time.

(R7) Scalability. The IDS must be able to
protect even a large number of systems.

(R8) Graceful Degradation of Service. The
overall IDS must not be affected if
some components stop working for any
reason.

(R9) Dynamic Reconfiguration. The IDS
must be able to be reconfigured without
restarting the whole system.

Beside these basic requirements, we have
additional ones concerning the implemen-
tation:
(R10) Deploy Standard Protocols and Data

Formats. To be consistent with other
IDS components, it is necessary to use
standardized or commonly agreed
communication protocols and data
formats.

(R11) Short Development Cycle. Due to
limited development resources, a fast
prototype development process was
required. We do not have the time for
developing (theoretical) frameworks
over years.

(R12) Deploy COTS products where possible.
In several cases, it is not necessary to
reinvent the wheel, so the possibility to
integrate 3rd party components was
essential.

(R13) Platform Independency. Due to
applicability to protect existing desktop
and server systems, dependencies of the
operating system or dedicated hardware
have to be avoided.

(R14) Modularization and Component Reusa-
bility. The IDS components have to be
generic enough to be adapted for
different applications, architectures and
other environmental conditions.

3. INFRASTRUCTURE COMPONENTS

This section describes a framework of
abstract components which are needed to build
a sensor infrastructure. After that, it is shown
how a concrete architecture can be
instantiated. The example is focussed on a
hierarchical architecture, but the components
could also form different variations, like
cooperating agents.

3.1 Abstract components
A sensor infrastructure consists of the
following components:
• Sensor

A sensor is a program or a process that
collects or generates measurement data.
This paper is only focussed on event
generating sensors which feed their output
into the distributed sensor system. In

- 3 -

reality, a more or less complex classifi-
cation process has to be performed inside
the sensor component.

• Sensor Adapter
For every sensor, a dedicated adapter is
needed. It has two main objectives: The
first is to control the execution of the
sensor program or process, and the second
is to translate the sensor output into the
internally used data model for sensor
events. The translated events are then
submitted to an event message dispatcher.

• Message Dispatcher
Dispatchers receive event messages from
inbound channels and distribute them to
event processing units or to outbound
channels for further transportation.
Additionally they are able to send and to
receive control messages, to interprete
them and react accordingly.

• Communication Channels
There are basically two types of
communication channels, one for event
message submission, and one for control
messages. Their nature is discussed in
section 4.

• Event Message Processor
To process event messages, additional
components are required. Like outbound
communication channels, they are event
message “consumers”. There are several
possibilities for processing events: The
most important processors are event
analyzers which examine incoming event
messages and classify them with respect to
a potentially critical system state. Other
types of event processing units are
databases; they collect and store incoming
events in a suitable format for later
inspection. Event filters collect messages
and produce some sort of output, like
events with modified priorities,
summarizing events or other forms of
“meta events”. This output is then again
fed into a message dispatcher.

• Response Units
The responder is able to perform specified
internal or external actions if instructed by
a message dispatcher or an analyzer unit.
These actions could not only be some sort

of administrator notification but even
active system or network reconfiguration.

3.2 A Hierarchical IDS Architecture
One commonly used architecture for

distributed IDS is hierarchical. As a proof-of-
concept, we decided to implement this
architecture, based on the abstract components
described in the last section.
• Agent

An Agent includes all processes which are
needed to establish an event message flow
from the sensors on a single host to the
central command-and-control entity.
Beside a number of sensors and sensor
adapters, a certain kind of message
dispatcher is needed. This communication
client is used for establishing and
maintaining the network connection to the
controlling entity. Additionally, it controls
the different sensor adapters which are
attached to it. If a new sensor event is
received by one of the adapters, it is
transmitted over the network to the
console. Even filtering events through local
preprocessing units is possible. Further-
more, the agents listen for incoming
connections from the console server, on
which command and control messages are
exchanged.

• Console
The collection of the components which
form a central command-and-control entity
is called the console. Again, a message
dispatcher is needed which we call the
communication server. It listens for
incoming event message connection
requests from distributed agents. After a
successful authorization procedure, the
server now listens on every established
connection for incoming event messages. If
a message arrives, it is fed into other
console components. The communication
server is also able to initiate a control
connection to each agent. An event
analyzer component examines incoming
events and classifies the resulting system
state. If the system state is classified as
critical, a new event message with a higher
priority is generated and the responder
process is activated. In most cases,

- 4 -

previously detected event messages have to
be taken into account, so the analyzer
needs to have access to the event database.

The concrete instantiation of the abstract
components in a hierarchical IDS is illustrated
in figure 1 A). Figure 1 B) shows an alterna-
tive architecture with autonomous client
components where a centralized controlling
entity is not included; this is not further looked
at within this paper.

4. COMPONENT COMMUNICATION

There are two basic types of component
communication involved in the described
infrastructure: event messages and control
messages. The former represent the occurrence
of a potentially security-critical state of the
system, while the latter are necessary for
command-and-control tasks. Both types of
messages might need to be transmitted over
several different communication mechanisms,
between different processes on one host and
between hosts over a network connection.

4.1 Event Messages
Primarily, event messages are generated by

the sensors, but generally all other IDS
components shall be able to generate event

messages as well, e.g in case of a system
failure. The internal representation of the
events may differ between components of the
architecture, but it has to be based on one
single data model to allow translation from one
format to another. Additional requirements for
transmitting event messages over a network
are authentication and encryption services.
Authentication is needed due to the possibility
of man-in-the-middle-attacks, and encryption
is necessary to avoid that possible attackers
were informed about their detection status.

Due to interoperability reasons, a widely
accepted data model for event messages shall
be used, such as the recommendations of the
IDWG (Intrusion Detection exchange format
Working Group) of the IETF. Their data model
is called IDMEF (Intrusion Detection Message
Exchange Format [6]) and is defined as an
XML Document Type Definition (DTD). In
addition to event messages, so-called
“Heartbeats” can be created to indicate to the
receiving component that the sender is still
alive.

To transport XML formatted IDMEF
messages over the network, the IAP (Intrusion
Alert Protocol [11]) has been defined. It
provides a reliable service; the reception of a

Control
Connec-
tion

Event
Connec-
tion

Message
Dispatcher

Adapter 1Sensor 1

Console

Adapter nSensor n

Message
Dispatcher

Storage

Agent

Message
Dispatcher

Adapter 1Data Sensor 1

Adapter nData Sensor n

Agent

Analyzer

Storage

Neighbour Agent

B)

A)

Control ConnectionEvent Connection

Responder

Analyzer

Responder
Security
Admin

Data

Data

Figure 1: Two possible IDS architectures as instantiations of the proposed components:
A) Hierarchical IDS, B) Cooperating Agents.

- 5 -

message has to be confirmed after checking the
content. Before establishing a communication
channel, it is necessary to negotiate profiles for
the communication capabilities. If they cannot
be negotiated, the channel is not established.
On a single IAP channel, a peer is exclusively
in the role of a sender or of a receiver. For
authentication and encryption services on the
underlying TCP layer, IAP uses TLS
(Transport Layer Security [8]). A more
extensive discussion of the above protocols
and data formats is far beyond the scope of this
paper.

4.2 Control Messages
Control messages are needed to transmit

component controlling information, such as
• Status requests and status reports,
• Start, stop and restart commands for

processes, and
• Reconfiguration requests and

acknowledgements.
The requirements for a protocol to transmit

control messages are different from the event
message protocol. Control messages are
typically transported in the opposite direction
of the event message flow. Since the protocols
for event messages as described above are not
specified for any other purpose, separate
connections have to be established. The
following requirements exist:
1. Reliability of message transport

Reception of messages shall be
acknowledged.

2. Security services
The payload of the protocol shall be
encrypted and authenticated due to the
reasons mentioned in the previous section.

3. Non-persisting connection
The connection shall only be established if
it is required, because during normal
operation control messages are not needed.
(“Heartbeat” messages as defined in the
IDMEF model, are sufficient to show that
an entity is working properly).

4. Small protocol overhead
Last, but not least, the processing overhead
shall not be too big, because the event
message protocols already contain a certain
amount of overhead.

While looking for a protocol that meets the
requirements, we identified different
alternatives. The Simple Network Manage-
ment Protocol (SNMP [4]) is frequently used
for control purposes. It also provides an
authentication service. But since reconfigu-
ration requests for arbitrary sensor programs
can include the content of whole configuration
files (see section 5), a connectionless protocol
is not suitable for handling the transport. A
few more protocols (e.g. HTTP/S, BEEP [15])
would be able, but their protocol overhead is
obviously too large, especially if the control
connection has to be re-established for every
message.

Proprietarily defined text messages,
transmitted over a TLS-secured TCP
connection, would provide an easy way to
meet the requirements. The processing
overhead is relatively small, especially if a
TLS session can be reused. An extensible
description of the syntax and the semantics of
the protocol is required.

5. SENSOR ADAPTERS

One of the key issues of the described
infrastructure is the easy integration of
different sensor programs or processes. Due to
the fact that sensors may produce output in
arbitrary formats, it is necessary to have a
specific translation module for each sensor.
This translation module shall transform the
events into one strictly defined format that is
used for internal representation. Hence,
necessary information has to be extracted from
the sensor output, and a new according event
representation has to be generated. For being
able to transmit event messages over the
network or to store events within a file,
another translation module may be required. In
the case of IDMEF events, the internal
representation has to be translated to an XML
formatted text, according to the DTD. The
translation process within a sensor agent is
illustrated in figure 2.

To manage arbitrary sensor programs, it is
necessary to handle the program executables as
well as all required configuration files. If a
reconfiguration of a sensor becomes necessary,
the controlling entity shall send a new

- 6 -

executable or configuration data to the local
message dispatcher, using the control message
connection, and the adapter shall put the
content to the correct file. After that, the sensor
needs to be restarted. Implementing this
requires an according extension of the control
protocol.

6. BASIC IDS SELF-PROTECTION

A system protected by an IDS can only be
as safe as the IDS itself. Therefore surviva-
bility issues are very important for a
distributed IDS which aims at protecting
potentially large networks.

Every component of the proposed
infrastructure is supposed to create a high-
priority event message if any sort of failure
occurs. These event messages have to be
submitted to the controlling entity which
informs the security administrator or triggers
countermeasures, if applicable. To avoid false
positives (like for crashing sensors), the event
messages have to be analyzed prior to a
reaction.

6.1 Protecting IDS Connections
A possible threat against local message

dispatchers concerns their network connection
to other IDS entities. Attacks against
communication integrity, confidentiality and
authenticity are covered by a secure

communication protocol like TLS [8]. We
obtain a different situation if an attacker
simply terminates the event or control message
communication between the different
components (e.g. by sending RST packets).
This may also happen if there are other
problems with the underlying network links.
Therefore, the controlling entity has to decide
if there is a potential denial-of-service attack
or not.

Every dispatcher that has to submit event
messages to another entity shall store its
unsent messages on the local filesystem in case
of a broken link (either due to a network error
or to an active connection termination by an
attacker) for a later state recovery. The affected
message dispatcher has to re-establish a
terminated connection immediately, if possible
on an alternative link (different route, different
port etc.). This is due to two reasons: On one
hand, it is more difficult for the attacker to
detect and destroy the alternative channel. On
the other hand, if no re-connection can be
established within a given time period, the
controlling entity can be almost sure that there
is an attack rather than a network problem.

6.2 Protecting IDS Components
There are several ways for an attacker to

corrupt the IDS components on a penetrated
host. Generally, there are two basic types of

Event connection

Connection Client
AdapterSensor

Data

Pty

Queue

Agent

proprietary event message (internal representation)

Translation

Translation

XML

to
Console

Control connection

Figure 2: Translation of sensor data to XML-based IDMEF representation in a sensor agent.

- 7 -

attacks: Termination identifies the case in
which the attacker terminates the execution of
a component process to avoid being detected.
Blinding means that the components keep on
working, but do not have the possibility to
detect the attacker.

6.2.1 Process Termination

The protection of a component against
termination is possible if the running status of
the component process is being checked
continuously by another component. This
component is called observer. If the observer
detects a process termination, it sends an
according high priority event message to the
controlling entity that triggers an according
reaction. It is not necessary that one
component observes all other components on a
single host, e.g. a sensor adapter might be
observing the execution of its sensor whereas
the local message dispatcher observes the
attached adapters.

6.2.2 Blinding

Depending on the purpose and the nature of
an IDS component, there might be a high
number of possibilities to corrupt it without
being notified. Especially for 3rd party sensors,
there are no generic countermeasures; these
attacks have to be prevented by the sensor
itself or by external mechanisms.

A simple but effective way to blind a
component is to tamper its configuration (or
even its execution code) to make the IDS
believe that everything works fine. For
components which are restarted frequently, or
which read their runtime configuration from
the local storage device, configuration
tampering can be detected by observing at least
the following important file properties:
• Content checksum (digest)
• File ownership
• Modification time
• Access permissions.

Although external tools like Tripwire [2] or
AIDE [12] perform this task very efficiently,
their local configuration or database may also

be tampered by the attacker. Therefore, we
propose the following strategy:

When executing a component on a remote
host for the first time or after a reconfiguration
(within a clean environment), the above
properties of the program executables (IDS
components and 3rd party sensors) as well as
of all affected configuration and data files are
determined and submitted to the controlling
entity which stores them within its clean and
tamper-proof environment. During normal
operation, on system startup and at regular
intervals, these values are determined again
and compared with the stored values, so
unauthorized modifications can be detected
reliably.

It has to be mentioned, that also runtime
process manipulation may be misused for
blinding IDS components, but detecting this
needs further research.

7. IMPLEMENTATION

We implemented a hierarchical IDS
infrastructure as described in section 3.2.
When choosing the impementation platform,
we had to take care of requirements (R13) and
(R14) of section 2. Both constraints would
have been met easily by a Java based
approach. But Java has a few disadvantages,
like dependency of a local runtime
environment and properties of malicious
mobile code. Even the popular Perl language
has also disadvantages, as noted in [17].
Therefore, we decided to use C++, strictly
using object oriented design techniques and a
few platform-dependent implementation
distinctions.

The following subsections describe
implementation details, with respect to the
requirements (R1) - (R12) of section 2.

7.1 Abstract Connection Framework
For easy maintaining and adjustments in the

several protocol layers, we developed a multi-
layer network abstraction framework. This
framework generally implements the abstract
representation of a connection, each with four
basic operations: open(), close(),
read() and write(). This is applicable for
almost every class of connections one might

- 8 -

think of, like connection to files, databases,
Unix pipes, shared memory, semaphores or
network sockets. When creating a different
class of connections for each OSI network
layer, it is obvious that a higher layer
connection operation makes use of the
according operation of the next layer
connection class below it. The framework has
been implemented as a C++ class library. Each
connection class on a higher network layer has
been derived from a class on a lower level.

7.2 Sensor Adapters
To be consistent with the rest of the

architecture, we modelled the sensor adapters
as abstract connections, as described in the last
section. In Unix and Unix-like environments,
pipe connections are commonly used to control
other programs, to feed their standard input
channels and to read everything that comes
from their standard output and error channels.
Therefore, for using ordinary programs, sensor
adapters are a certain type of pipe connections,
with an integrated translation stage for the
transformation of sensor output data to the
internal event representation. For extracting
the necessary information from the sensor
program output, we use configurable standard
POSIX regular expressions. Hence, require-
ments (R5) and (R6) are met.

In our current prototype, we have
implemented adapters for the “snort” network
IDS sensor [14], for the “logsurfer” log file
analyzer [1] and other command-line based
tools. The configuration management for the
sensors is not yet supported.

7.3 Sensor Agent
A sensor agent consists of several sensor

adapters and a message dispatcher. The
dispatcher manages several connections and
watches for state changes of their file
descriptors by using the select() system
call. Thus, we have almost no computational
overhead for the distribution of messages (R4).
An agent runs continuously without
administrator interception, even if the
connection to an according console cannot be
established (R1). In this case, the event
messages are held within a message queue that
also can be written onto the local storage

device (see section 6.1). When restarting, the
event queue can then be recovered (R2).

The message dispatcher also observes the
running status of all deployed sensors and
generates an alert if necessary (see section
6.2). Additionally it determines the required
properties of all affected files of the runtime
environment and reports it to the console.
These protection mechanisms partially meet
(R3).

7.4 Communication Channels
The framework as described in section 7.1

was extended to handle the protocols which
are conforming to the IETF recommendations
for intrusion detection event transmission as
described in section 4. This meets our
requirement (R10). As described in section 6,
an additional buffer for the event message
objects has been integrated into the IDMEF
connection class. Currently the IAP protocol is
used for the transport of the event XML
representation. The IAP implementation was
originally based on the “libiap” part of
“SnortNet” [10]. Every message has to be
confirmed by the receiving peer. Only if the
reception has been confirmed by the console,
the message is removed of the agent’s queue
and will not be re-submitted.

The internal representation of event
messages are C++ objects which reflect the
IDMEF data model. For translation to the
XML format and back, the “libidmef”
library [16] from Silicon Defense, Inc. is used.
The event message objects are used as
parameters for the read() and write()
operations of the IDMEF connection class; the
according translation process is integrated.
Hence, the programmer of the agents and
console only deals with C++ objects and does
not necessarily need to know how they are
encoded, transmitted or decoded.

Control messages are simply encoded as
proprietary Text messages which were sent
over a TLS secured TCP connection. E.g. if an
agent shall be instructed to report its current
execution status, an according connection to
the clients control message port is established
by the console, the request command string is
transmitted, and, after the client has submitted
the status report, the connection is closed

- 9 -

again. Since the TLS context is shared between
all connections between two peers, the control
communication is very efficient (R4) without
security loss.

7.5 Console Server
Our console currently consists of a message

dispatcher, which additionally is able to
process user commands, of a screen-based
real-time console GUI and of a database
module. The number of connected agents is
only limited by the maximum number of
allowed file descriptors, so the implementation
supports scalability and therefore meets
requirement (R7). The database module was
implemented as an abstract database
connection for the “MySQL” [3] database
within our framework. Using the snort
database structure, we are able to store the
events submitted by several sensors and
agents. Since we have chosen this database
structure, it is possible to use a graphical user
interface like “ACID” (Analysis Console for
Intrusion detection Databases [7]), which can
be used to present the results to the security
administrator. Deploying these components
meets requirement (R12). The first working
prototype described in this paper has been
implemented within 6 months, so requirement
(R11) is obviously met.

8. INITIAL RESULTS AND
FUTURE WORK

As a primary result of the open IDS sensor
adapter design, we now are able to collect and
store all relevant audit data in a centralized
management console. The data collection is
presented to the security administrator; this
leads immediately to a shorter time period
needed for manual inspection, because only
one information source has to be analyzed
instead of several databases and log files. Also,
we obtain greater possibilities for concluding
on possible correlations between security
events coming from different sensors. Even
applications which do not include dedicated
audit log interfaces can now be connected to
the distributed IDS.

The presented countermeasures against
some common attack techniques for corrupting

the distributed IDS components have been
sucessfully tested. For an advanced attacker it
was formerly possible to reconfigure a sensor
silently in order to avoid being detected (e.g.
deletion of configuration options which are
necessary to detect root logins in the system
log files). Due to our integrity observation of
the operational environment, every unautho-
rized modification is now notified and an
appropriate alert message is sent to the
management console. The malicious termina-
tion of the network communication channel
between agent and console leads now to the
generation of alert messages on both entities,
and the data which was supposed to be
transmitted to the console is buffered on the
agent´s storage device until a retransmission is
possible.

By defining strictly used interfaces for
abstract connections, there is the possibility to
add more event processing or transmitting
modules in both agents and console. Some
future plans to extend the architecture to obtain
a more fault-tolerant and attack-resistant IDS
are as follows:
• Integrate IDXP communication

The IAP [11] protocol is no longer
maintained by the IDWG as an internet
draft, but has been replaced by IDXP
(Intrusion Detection Exchange
Protocol [9]), which is a profile of
BEEP [15]. For interoperability reasons,
this will be integrated in our system.

• IDS Self-Protection
As survivability of the IDS itself has
become a raising issue, our main focus will
be on developing new self-protection
techniques and on integrating them into the
infrastructure. As one example, an agent
may use alternative communication
channels in case of an attack against the
connection to the console. (maybe to
another, still properly working agent, or to
an redundant console entity). Another
example is the detection of IDS process
manipulation during runtime.

• Event Correlation Pre-Analyzer
For our next prototype, we plan to
implement a simple analyzer stage, that
detects predefined temporal event

- 10 -

correlations as an agent module. A trivial
sample application is the detection of a
brute-force password attack by the network
sensor and a consequent successful login
message found by a logfile analyzer.

9. SUMMARY

This paper has described our approach to
design and implement a universal and secure
intrusion detection sensor infrastructure as a
basis for future developments of IDS self-
protection techniques. After listing up all
requirements for a secure distributed IDS,
several generic IDS modules and communi-
cation components have been presented, as
well as their concrete instantiation in a
hierarchical architecture.

The possibility to add arbitrary 3rd party
IDS sensors is given by a generic sensor
adapter design which controls the sensor
execution, manages its configuration and
translates its output into a commonly used data
format. Basic integrity protection techniques
for the architecture components and their
communication channels against possible
attacks have been outlined.

A prototypical implementation of the
architecture and the protection mechanisms
has been discussed. Finally, initial results of
the work have been presented, as well as
possible directions for future research
activities.

ACKNOWLEDGEMENTS

The author would like to thank
M. Bussmann, C. Riechmann and R. Coolen
for lots of valuable comments and S. Henkel
for implementation workings.

BIBLIOGRAPHY

[1] Logsurfer Documentation Version 1.5.
http://www.cert.dfn.de/eng/logsurf/, 1997.

[2] Tripwire Download Page.
http://www.tripwire.org/downloads/index.php,
2001.

[3] The MySQL database. http://www.mysql.org/,
2002.

[4] J. D. Case, M. Fedor, M. L. Schoffstall, and
J. Davin. RFC 1067: Simple Network

Management Protocol.
http://www.ietf.org/rfc/rfc1067.txt, August
1988.

[5] Mark Crosbie and Eugene H. Spafford. Active
Defense of a computer system using
autonomous agents. Technical report, The
COAST Group, Department of Computer
Science, Purdue University, West Lafayette, IN,
Feb. 1995.

[6] D. Curry and H. Debar. Intrusion Detection
Message Exchange Format - Data Model and
Extensible Markup Language (XML) Document
Type Definition. IETF Internet Draft draft-ietf-
idwg-idmef-xml-03.txt, February 2002. IETF
IDWG.

[7] R. Danyliw. ACID: Analysis Console for
Intrusion Detection Databases.
http://acidlab.sourceforge.net/, 2002.

[8] T. Dierks and C. Allen. RFC 2246: The TLS
Protocol Version 1.0.
http://www.ietf.org/rfc/rfc2246.txt, January
1999.

[9] B. Feinstein, G. Matthews, and J. White. The
Intrusion Detection Exchange Protocol. IETF
Internet Draft draft-ietf-idwg-beep-idxp-03.txt,
September 2001. IETF IDWG.

[10] F. Yarochkin. ’SnortNet’ - A Distributed
Intrusion Detection System.
http://snortnet.scorpions.net/, June 2000.

[11] H. P. Gupta, T. Buchheim, B. Feinstein,
G. Matthews, and R. Pollock. IAP: Intrusion
Alert Protocol. IETF Internet Draft draft-ietf-
idwg-iap-05.txt, March 2001. IETF IDWG.

[12] R. Lehti. AIDE Download Page.
http://www.cs.tut.fi/ rammer/aide.html, 2001.

[13] Phillip A. Porras and Peter G. Neumann.
EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances. In
Proceedings 20th NIST-NCSC National
Information Systems Security Conference,
pages 353–365, 1997.

[14] Martin Roesch. Snort - Lightweight Intrusion
Detection for Networks. In USENIX LISA ’99
conference, November 1999.

[15] M. Rose. RFC 3080: The Blocks Extensible
Exchange Protocol Core.
http://www.ietf.org/rfc/rfc3080.txt, January
1999.

[16] Silicon Defense Inc. LIBIDMEF download
page. http://www.silicondefense.com/
idwg/libidmef/index.htm, 2002.

[17] Eugene H. Spafford and Diego Zamboni.
Intrusion detection using autonomous agents.
Computer Networks, 34:547–570, 2000.

- 11 -
[18] G. Vigna, R. A. Kemmerer, and P. Blix.

Designing a web of highly-configurable
intrusion detection sensors. In Proceedings of
the Workshop on Recent Advances in Intrusion
Detection (RAID 2001), Davis, CA, October
2001.

	ABSTRACT
	INTRODUCTION
	DESIGN REQUIREMENTS
	INFRASTRUCTURE COMPONENTS
	Abstract components
	A Hierarchical IDS Architecture

	COMPONENT COMMUNICATION
	Event Messages
	Control Messages

	SENSOR ADAPTERS
	BASIC IDS SELF-PROTECTION
	Protecting IDS Connections
	Protecting IDS Components
	Process Termination
	Blinding

	IMPLEMENTATION
	Abstract Connection Framework
	Sensor Adapters
	Sensor Agent
	Communication Channels
	Console Server

	INITIAL RESULTS AND �FUTURE WORK
	SUMMARY
	ACKNOWLEDGEMENTS
	BIBLIOGRAPHY

